Monepaloside K, a New Triterpenoid Saponin from *Morina nepalensis* var. *alba* Hand. - Mazz.

Rong Wei TENG, De Zu WANG, Chong Ren YANG*

Kunming Institute of Botany, CAS, Kunming 650204

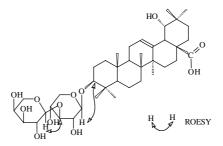
Abstract: One new triterpenoid saponin, monepaloside K (1) was isolated from the water-soluble part of the whole plant of a famous Tibetan medicinal herb, *morina nepalensis* var. *alba* Hand.-Mazz.. Its structure was determined to be $3-O-\alpha$ -L-arabinopyranosyl-($1\rightarrow 3$)- β -D-xylopyranosyl siaresinolic acid on the basis of spectroscopic evidences, especially 2D NMR techniques.

Keywords: Morina nepalensis var. alba, Dipsacaceae, monepaloside K, 2D NMR techniques.

Morina nepalensis var. *alba* Hand.-Mazz., belonging to the family *Dipsacaceae* and genus *Morina*, is a famous Tibetan traditional medicinal herb in China and has been used for the treatment of many diseases since ancient time^{1,2}. Although sterols, triterpenes, alkaloids, flavanoids, phenylpropanol derivatives and so on have been found in *Morina* plants³⁻⁷, the chemical constituents of *M. nepalensis* var. *alba* Hand. - Mazz. and the water-soluble chemical constituents of *Morina* plants have not been reported. From the water-soluble fraction of the whole plant of *M. nepalensis* var. *alba*, one new triterpenoid saponin, monepaloside K (1) was isolated and identified.

Monepaloside K (1), white powder, mp: 177 - 179°C; $[\alpha]_D^{26}$ +0.88 (*c* 0.29, MeOH). Its negative ion HR-FABMS showing a quasi-molecular peak at *m*/*z* 735.4281 [M-H]⁻ established its molecular formula as C₄₀H₆₄O₁₂(calcd. for C₄₀H₆₃O₁₂: 735.4320) which was also confirmed by negative ion FABMS showing a molecular peak at *m*/*z* 736 [M]⁻ and ¹³C NMR (DEPT) spectrum. In the ¹³C NMR spectrum (**Table 1**), the signals due to the aglycon moiety were in good agreement with those of the ilexoside A methyl ester (3-O- β -D-xylopyranosyl siaresinolic acid methyl ester) except C-28⁸. Chemical shift of C-28 (180.88 ppm) in **1** showed that C-28 was carboxyl group and not esterified. Consequently **1** was considered as a C-3 monodesmoside of siaresinolic acid. It is worth noting that the chemical shift of H-19 (δ 3.59, brs).

The ¹H NMR spectrum of **1** exhibited two anomeric proton signals at δ 4.77 (d, 7.2 Hz) and δ 5.25 (d, 7.2 Hz). In the meantime, ¹³C NMR spectrum exhibited two anomeric carbon signals at δ 107.32 and δ 106.00. So **1** has one more sugar than ilexoside A⁸. In HMQC-TOCSY spectrum, ¹³C signals of this sugar were at δ 106.00, 74.45, 72.79, 69.37, 67.38 respectively, and similar to those of α -L-arabinopyranosyl⁹⁻¹². In ROESY spectrum of **1**, H-3 and H-5_b of this sugar were found to be correlated with its


^{*} E-mail: cryang@public.km.yn.cn

Rong Wei TENG et al.

anomeric proton H-1, which confirmed the α -configuration of its anomeric proton. The 6.7 Hz (> 5 Hz) coupling constant of ${}^{3}J_{(H-1, H-2)}$ also confirmed the α -configuration^{11,12}.

Compared ¹³C NMR data of **1** with ilexoside A methyl ester, C-3 of xylopyranosyl in **1** was shifted downfield from δ 78.58 to δ 86.87⁸. It suggested that the arabinopyranosyl was linked at C-3 of xylopyranosyl which also was confirmed by ROESY spectrum showing NOE correlation between ara H-1 (δ 5.25, d, 7.2 Hz) and xyl H-3 (δ 4.13). Furthermore, NOE correlation between xyl H-1 (δ 4.77, d, 7.2 Hz) and H-3 (δ 3.30, dd, 4.2 Hz, 11.6 Hz) of the aglycon was also detected in ROESY spectrum. So the structure of **1** was elucidated to be 3-O- α -L-arabinopyranosyl-(1 \rightarrow 3)- β -D-xylop-yranosyl siaresinolic acid.

Table 1 ¹³C NMR data of saponin **1** (125 MHz, pyridine- d_5)

С		С		С		С		С		С	
1	38.63	8	40.05	15	28.90	22	33.36	29	28.90	ara-1	106.00
2	26.72	9	48.34	16	28.41	23	28.11	30	24.11	2	72.79
3	88.95	10	37.23	17	46.12	24	16.91	xyl-1	107.32	3	74.45
4	39.65	11	24.20	18	44.84	25	15.47	2	74.50	4	69.37
5	55.00	12	123.16	19	81.16	26	17.52	3	86.87	5	67.38
6	18.69	13	144.87	20	35.77	27	24.88	4	69.37		
7	33.70	14	42.20	21	29.22	28	180.88	5	66.60		

References

- 1. Delectis Florae Reipularis Sinicae Agendae Academiae Sinicae edita, *Flora Reipublicae Popularis Sinicae*; Science Press, Beijing, **1986**, *73* (1), 44.
- J. S. Yang, C. J. C. Chu, *Diqing Tibetan Medicine*, Yunnan Nationality Press, Kunming, 1989, Version 1, p.409.
- 3. B. N. Su, Y. Takaishi, J. Nat. Prod., 1999, 62, 1325.
- 4. B. N. Su, Y. Takaishi, Chem. Lett., 1999, 1315.
- 5. B. N. Su, Y. Takaishi, J. Nat. Prod., 1999, 62, 1363.
- 6. B. N. Su, Y. Takaishi, Chem. Pharm. Bull., 1999, 47 (11), 1569.
- 7. B. N. Su, Y. Takaishi, Tetrahedron, 1999, 55, 14571.
- 8. A. Inada, M. Kobayashi, H. Murata, Chem. Pharm. Bull., 1987, 35 (2), 841.
- 9. R. W. Teng, D. Z. Wang, C. M. Li, et al. Chin. J. Magn. Reson., 1999, 16 (4), 295.
- 10. M. J. King-Morris, A. S.Serianni, J. Am. Chem Soc., 1987, 109 (12), 3501.
- 11. R. W. Teng, H. M. Zhong, C. Q. Chen, D. Z. Wang, Chin. J. Magn. Reson., 1999, 16(5), 389.
- 12. R. W. Teng, D. Z. Wang, C. Q. Chen, Chin. Chem. Lett., 2000, 11 (4), 337.

Received 17 August, 2001